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A B S T R A C T

Ti-based metallic glass matrix composites (MGMCs) with a composition of Ti50Zr20V10Cu5Be15
(atomic percent, at. %) exhibit excellent tensile ductility and distinct work-hardening capability.
A dislocation pile-up model (DPM) has been established to elaborate the dislocation motion near
the yield point and to theoretically derive a linear Hall-Petch-like relationship between the yield
strength, σ, and the inverse square root of the diameter of dendrite arms, d−1/2. The materials
constant, k, in the present Hall-Petch-like relationship can be calculated on the basis of the pile-
up model, and is very close to the experimental value. The hardness variation in the dendrites
and the strengthening effect from unloading-reloading tests prove the reasonability of the DPM
during tension. The Hall-Petch-like relationship is verified for a variety of MGMCs, whose plastic
deformation is only dominated by dislocation motion. Mean-field theory (MFT) has been first
utilized to build a relationship between the critical diameter of dendrites, dc, and the composition
in MGMCs with the similar atomic percentages of low solubility elements. By tuning the com-
position, one can universally scale the Hall-Petch-like relationship, and accurately predict the
yield strength of such in-situ MGMCs.

1. Introduction

Bulk metallic glasses (BMGs), compared with traditional crystalline alloys, are well-known for their unique mechanical properties,
such as the high yield strength, large elastic limit, and high hardness, together with excellent corrosion and wear resistance, etc.
(Hofmann, 2010; Schuh et al., 2007; Wang et al., 2004). Nevertheless, due to the rapid development of highly-localized shear bands
upon loading at ambient temperature, BMGs usually exhibit poor ductility and fail catastrophically, which greatly restricts their
applications as potential structural engineering materials (Chen and Dai, 2016; Eckert et al., 2011; Greer et al., 2013; Hufnagel et al.,
2016). In order to retard rapid shear banding in BMGs and promote the generation of multiple shear bands, metallic glass matrix
composites (MGMCs) reinforced by in-situ secondary dendritic phases have been successfully developed to enhance room-tempera-
ture plasticity effectively (Eckert et al., 2011; Hofmann et al., 2008a; Qiao et al., 2009a, 2016a). Recently, more and more studies on
such dendrite-reinforced MGMCs mainly focus on the very composites with high specific strength and large tensile ductility

https://doi.org/10.1016/j.ijplas.2018.02.015
Received 28 October 2017; Received in revised form 22 February 2018; Accepted 23 February 2018

∗ Corresponding author. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
E-mail address: qiaojunwei@gmail.com (J.W. Qiao).

International Journal of Plasticity 105 (2018) 225–238

Available online 06 March 2018
0749-6419/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/07496419
https://www.elsevier.com/locate/ijplas
https://doi.org/10.1016/j.ijplas.2018.02.015
https://doi.org/10.1016/j.ijplas.2018.02.015
mailto:qiaojunwei@gmail.com
https://doi.org/10.1016/j.ijplas.2018.02.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijplas.2018.02.015&domain=pdf


(Hofmann et al., 2008b; Jiang et al., 2015a). Thereinto, Ti-based MGMCs have attracted much attention for their easy processing,
excellent mechanical properties, low density, and high glass-forming ability of glass matrices, which may contribute to their dra-
matically-improved processing potential and lightweight applications (Fornell et al., 2009; Hofmann et al., 2008b; Jiang et al., 2015a;
Qiao et al., 2012).

During the plastic deformation of such dual-phase Ti-based MGMCs, as the soft crystalline phases (dendrites) are embedded
uniformly in the glass matrix, ductile dendrites can impede the quick shear-band propagation and promote the multiplication of shear
bands. This trend can result in global tensile ductility at room temperature (Hofmann et al., 2008b; Jiang et al., 2015a; Qiao et al.,
2011, 2012; Zhang et al., 2014). To further investigate the plastic-deformation mechanisms of such composites in more detail,
together with a tremendous improvement in the tensile ductility, compared with monolithic BMGs, Qiao et al. (Qiao et al., 2011,
2013; Sun et al., 2015a) have proposed constitutive relationships, based on different deformation stages to elaborate the deformation
mechanisms upon room-temperature tension. According to the stress-strain curves and the deformation modes of two phases, the
tension behavior has been divided into three stages: (1) elastic (elastic-elastic and elastic-plastic), (2) work-hardening (plastic-
plastic), and (3) softening (plastic-plastic) (Qiao et al., 2011; Sun et al., 2015a). Moreover, Zhang et al. (Jeon et al., 2016; Zhang
et al., 2014) have proposed that the size of the dendrites plays a significant role for the tensile ductility of MGMCs, and the yield
strength increases with decreasing the dendrite size. The effect of the volume fractions and sizes of dendrites on tension ductility have
been widely studied (Hofmann et al., 2008b; Lee et al., 2004). However, the dependence of the yield strength on the dendrite size is
yet to be studied quantitatively. Generally, in conventional polycrystalline alloys, the yield strength significantly increases with the
decrease of the grain size, and the flow stress follows a Hall-Petch relationship (Meyers et al., 2006). Meanwhile, the materials
constant, k, can be estimated by a dislocation pile-up model (DPM) (Meyers et al., 2006).

However, no direct experimental visualization technique is available that allows nonintrusive investigation of grain-boundary
structures, limiting atomic-level understanding of grain boundaries (Swygenhoven, 2002). Liquid-like grain boundaries with the
amorphous structure, resulting from cooling down from the melt, was utilized in atomistic simulation to shed light on the de-
formation mechanism (Swygenhoven, 2002). Hence, the glass matrix can be assimilated to grain boundaries to simplify the de-
formation mechanism in MGMCs. Although dislocation motion cannot be generated in the glass matrix to accommodate the plastic
strain, the plastic flow in these regions at room temperature and moderate strain rates is typically inhomogeneous and proceeds via
the formation and propagation of shear bands (Fornell et al., 2009; Qiao et al., 2016b).

In this study, an improved DPM is established, based on Ti50Zr20V10Cu5Be15 MGMCs. The generation and multiplication of
dislocations in dendrites is quantitatively assessed from the elastic to work-hardening stages to derive a relationship between the
yield strength and the size of dendrites. The deformation mechanisms during the work-hardening stage are investigated by focusing
on the interaction between the evolution of dislocations in dendrites and the propagation of shear bands in the glass matrix. Since the
chemical composition determines the volume fraction and size of the dendrites, the dependence of the yield strength on composition
is tentatively tunable, using the mean-field theory, and a universal scaling Hall-Petch-like relationship is derived successfully.

2. Experimental

Alloy ingots with a normal composition of Ti50Zr20V10Cu5Be15 (atomic percent, at.%) were prepared by arc-melting the mixture of
Ti, Zr, V, Cu, and Be pure metals with a purity of above 99.9% (weight percent, wt.%) and cast into a copper mold under a Ti-gettered
argon atmosphere. The dimension of samples was ϕ 6mm×80mm. Dog-bone-like tensile specimen gauges with dimensions of ϕ
2mm×15mm were fabricated from the as-cast cylindrical samples by electrical discharge machining. Quasi-static tensile tests and
pre-tensile tests were conducted at room temperature at a constant strain rate of 2×10−4 s−1 for at least five times, using an Instron
6969 universal testing machine. The reloading tensile tests were defined such that the specimens were preloaded from 0 to 1400MPa,
and then reloading tests were conducted until final fracture. The phases of the as-cast samples were characterized by X-ray diffraction
(XRD) using Cu Kα radiation. The microstructures of lateral and fracture surfaces of samples after tension were investigated by
scanning electron microscopy (SEM). The microstructures of the samples before and after the tensile tests were analyzed by a JEM-
2010 transmission electron microscope (TEM). The TEM specimens were prepared by dimpling and ion-milling, using a Gatan 691
device. A Nano Indenter II tester (MTS Systems, USA) with a trihedral Berkovich indenter was used to measure the hardness of both
phases in the pre-tensile and tensile samples. The specimens were indented to a maximum depth of 500 nm at a strain rate of 0.05 s−1,
using the indenter system set in a depth-control mode. The specimens for TEM and nano-indentation tests were taken from an
uniform deformation region adjacent to the softening region. In order to obtain the stress distribution near the yield point, finite-
element-method (FEM) analysis, using the ABAQUS software, was performed.

3. Results

3.1. Microstructures

Fig. 1(a) shows a typical SEM image of as-cast Ti50Zr20V10Cu5Be15 MGMCs, which have been processed by the image software
Adobe Photoshop CC. Crystals with a dendritic morphology are uniformly distributed in the glass matrix. Analyzing Fig. 1(a), using
the software Image-Pro Plus, reveals that the volume fraction of dendrites is 48 ± 1.1 (volume percent, vol.%), and the average
diameter of the dendrite arms d , is 2.35 ± 0.005 μm. The diameter is obtained by averaging the lengths passing through the center
of the objects at 2-degree intervals for each dendrite, and at least 1000 dendrites were used for counting. The frequency counts of
dendritic diameter, approximate to the Gaussian distribution, is shown in the inset of Fig. 1(a).
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Besides, the TEM experiments were conducted to further verify the dual-phase structure in the current composites. Characteristic
selected-area electron diffraction (SAED) patterns are shown in Fig. 1(c) and (d), corresponding to the dendrites and the glass matrix,
respectively. As shown in Fig. 1(c), the crystal structure of the dendrites is typically body-centered-cubic (bcc), consistent with the
sharp diffraction peaks in the XRD pattern, displayed in Fig. 1(b). In contrast, only diffuse maxima appear in Fig. 1(d), revealing that
the matrix has an amorphous structure.

Moreover, other in-situ Ti-based MGMCs with different compositions, i.e., Ti40Zr24V12Cu5Be19, Ti46Zr20V12Cu5Be17, and
Ti48Zr18V12Cu5Be17, are listed in Table 1 to identify the relationship between the yield strength and the diameter of the dendrite arms
(Sun et al., 2015b; Zhang et al., 2014). Similar volume fractions of dendrites in these MGMCs were calculated from SEM images:
48 ± 2.7 vol.% for Ti40Zr24V12Cu5Be19, 46 ± 0.6 vol.% for Ti46Zr20V12Cu5Be17, and 54 ± 1.2 vol.% for Ti48Zr18V12Cu5Be17, re-
spectively. The average diameters of the dendrite arms are 1.08 ± 0.094, 1.36 ± 0.041, and 1.54 ± 0.053 μm, respectively.

3.2. Deformation behavior

3.2.1. Tensile properties
Uniaxial tensile tests were conducted for the as-cast MGMCs at room temperature. Fig. 2 displays a typical true tensile stress-strain

curve. The curve can be divided into three stages: elastic, work-hardening, and softening stage. Obviously, the present Ti-based
MGMCs exhibit a high yield strength of∼1350MPa, and distinct work-hardening capacity (∼2%), as shown in the stage (2) in Fig. 2.
The ultimate tensile stress (UTS) is up to∼ 1510MPa at a corresponding strain of ∼4.2%. After achieving the ultimate stress,
softening, i.e., the stage (3), prevails until the final fracture occurs at a strain of∼10.7%, accompanied by macroscopic necking of the
tested samples. Analogous necking associated with tensile ductility has been found for many MGMCs (Sun et al., 2015b; Zhang et al.,
2014). The inset in Fig. 2 shows the morphology of the samples before and after tension.

In order to verify that work hardening stems completely from plastically-deformed dendrites, unloading-reloading tensile tests
have been conducted. Fig. 3 displays two work-hardening periods on the engineering stress-strain curve. Upon the first loading, the
dendrites enter into the strengthening stage, and only a few shear bands are generated in the glass matrix (Qiao et al., 2013; Sun
et al., 2015a). Compared with the yield strength upon first loading, the new yield stress upon reloading is higher than the flow stress
at the point of unloading (denoted as the region A on the stress-strain curve in Fig. 3), which apparently increases by ∼100MPa. Due
to the fact that dislocation motion prevails, the apparent strengthening effect during the unloading-reloading tests of the current
MGMCs is consistent with other works (Wu et al., 2014; Zhang et al., 2017a).

As plastic deformation continues, a stress overshoot, i.e., a yield peak phenomenon, is widely observed in metallic glasses and

Fig. 1. (a) SEM image of the as-cast composite; (b) XRD pattern of the composite; (c) and (d) show SAED patterns of the dendrites and glass matrix, respectively.

Table 1
Volume fractions of dendrites (%), average diameters, d, critical diameters, dc, and ratios of elements, ξ, of metallic glass matrix composites.

Composition, atom (%) Volume fraction of dendrites (%) Average diameter, d() (μm) Critical diameter, dc (μm) Ratio of elements, ξ

Ti40Zr24V12Cu5Be19 (Zhang et al., 2014) 48 ± 2.7 1.08 ± 0.094 1.23 ± 0.002 3.36
Ti46Zr20V12Cu5Be17 (Zhang et al., 2014) 46 ± 0.8 1.36 ± 0.041 1.28 ± 0.002 3.88
Ti48Zr18V12Cu5Be17 (Sun et al., 2015b) 54 ± 1.2 1.54 ± 0.053 1.52 ± 0.003 3.88
Ti50Zr20V10Cu5Be15 (Present study) 48 ± 1.1 2.35 ± 0.005 2.35 ± 0.005 4.67
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crystalline alloys (Jiang et al., 2015b; Nieh and Nix, 1986; Yang et al., 2016). The stress overshoot may be attributed to the delayed
activation of shear transformations caused by the insufficient free volume in the glass matrix. The shear-induced dilatation results
from the positive interplay between the shear transformation and free-volume creation, and the latter plays a dominant role (Jiang
et al., 2015b). Furthermore, the co-deformation of the two phases generates an explicit elastic-plastic transition through the load
transfer and strain partitioning (Eckert et al., 2011; Yang et al., 2016; Zhou et al., 2013). Upon reloading, the glass matrix is
elastically deformed while the dendrites begin to deform plastically. As the tensile strain increases, the mobile dislocation density
decreases within the dendrites, and a higher stress is needed to be overcome for the dendrites to yield, which lies on a forest type
dislocation interaction (Nieh and Nix, 1986; Yang et al., 2016). This trend leads to an increase of the yield point. Once the glass
matrix yields, the rapid relaxation of elastic stresses and strains at the interfaces between the dendrites and glass matrix causes the
overall stress to drop. Therefore, the stress overshoot in the reloading tests originates from the load transfer and shear-induced
dilatation in the glass matrix. After the stress drop, the samples exhibit second work-hardening up to an UTS of ∼1450MPa (denoted
as the region B on the stress-strain curve in Fig. 3).

3.2.2. Nano-indentation analysis
In order to further explore the deformation mechanisms, nano-indentation tests on the dendrites and the glass matrix in the as-

cast state, after pre-tensile deformation, and after reloading, were conducted for the present Ti-based MGMCs for at least five times,
respectively. The hardness histograms in Fig. 3 display the corresponding results, as well as the comparison of the average hardness

Fig. 2. Tensile true stress-true strain curve of the Ti50Zr20V10Cu5Be15 MGMC.

Fig. 3. Reloading the tensile engineering stress-strain curve of the composite and hardness of the dendrites and glass matrix at the three stages.

Table 2
Hardnesses of the dendrites and the glass matrix in the as-cast state, after pre-tensile deformation, and after reloading.

Hardness (GPa) As-cast Pre-tensile Reloading

Dendrite 4.2 ± 0.54 4.39 ± 0.52 5.8 ± 0.92
Glass Matrix 6 ± 0.75 6.03 ± 0.38 5.91 ± 0.80
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between the two phases in the very three cases. The detailed hardness values are summarized in Table 2. Obviously, the dendrites are
softer than the glass matrix in the as-cast composites, as widely found for other MGMCs (Narayan et al., 2010; Wu et al., 2010; Yang
et al., 2016). After the pre-tensile tests, the dendrites become slightly harder than in the as-cast state. The hardness of the dendrites
successively increases due to work hardening upon plastic deformation. After the second work-hardening stage in the reloading tests,
the hardness of the dendrites is almost equal to that of the glass phase. Due to a high density of shear bands with the highly-localized
plasticity, the glass matrix slightly softens upon reloading (Bei et al., 2006; Hufnagel et al., 2016).

3.2.3. Tensile deformation structure
Fig. 4(a) shows the fracture surface consisting of shear lips and fibrous regions. Macroscopic necking can be seen, even by naked

eyes, giving direct evidence for the occurrence of instable plasticity. The characteristic contour of the fracture surface, termed as a
cup-and-cone fracture, is displayed in the inset of Fig. 4(a), which is a high-magnification image of the rectangle in Fig. 4(a). The
dimples are indicative of ductile fracture under tension, as it frequently occurs in ductile alloys (Meyers et al., 2006). Profuse shear
bands are visibly distributed on the lateral surfaces near the fracture surface, as can be seen in Fig. 4(b). The two propagation
directions of the shear bands are at an angle of ∼40° with respect to the loading direction. The multiplication of secondary shear
bands with a spacing of 2–3 μm between the primary shear bands results from the interaction between the dendrites and the shear
bands (Eckert et al., 2011).

To reveal the central role of dislocation motion on the plasticity TEM investigations were conducted. The bright-field (BF) images
indicate the typical dislocation structure and multiple slip systems in the dendrites subjected to severe plastic deformation. It seems
that the propagation path of the shear bands extends from the glass matrix into the dendrites. The trace of shear bands is not visible,
for the reason that the formation of shear bands is not dominated by the crystallization (Chen and Lin, 2010). Diffraction pattern in
Fig. 5 show that the microstructure of the glass matrix remained amorphous after tension. Plenty of dislocation glide lines are parallel
and transect the dendrites. According to the −[11 1 ] orientation of the selected area electron diffraction (SAED) pattern shown in the
inset of Fig. 5(a), two direction glide lines are perpendicular to the −(01 1 ) and −(12 1 ) planes, respectively, as unveiled by the trace
analysis. The dislocation glide inside the dendrites is localized on a distinct set of {110}/{121}-type bcc lattice planes. Another two
direction glide lines are perpendicular to −(0 1 1) and − −(414)planes, as shown in Fig. 5(b). Some slip systems are activated not only on the
preferred planes {110}, but also on {121} and {414}-type bcc lattice planes. In contrast to the SAED patterns from as-cast MGMCs,
only the dislocation-based model of plastic deformation has taken place in the dendrites during tension. Even though the dendrites

Fig. 4. Fracture (a) and lateral surfaces (b) of deformed samples after tension, respectively.

Fig. 5. TEM bright-field image of the typical dislocation structure and the multiple slip systems in the dendrites after tension.
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suffer a high stress concentration, neither twinning nor phase transformation behavior is discovered in the current composites.
Apparently, the addition of a considerable amount of vanadium as the β-phase-stabilizing element accounts for this dislocation-based
deformation mode (Hofmann et al., 2008b; Kolodziejska et al., 2016; Zhang et al., 2017a, 2017b; Zhecheva et al., 2005).

Fig. 6(a) displays a TEM BF image to visually elaborate the stress propagation in the MGMCs. The areas I, II, and III of the BF
images correspond to dendrites that keep the same crystal orientation, and the area between these three areas is the glass matrix. This
trend can be confirmed by the SAED patterns, shown in Fig. 6(b) and (c). Below the dashed line in Fig. 6(a), the propagation path of
shear bands (denoted by yellow arrows) can be observed. Shear bands penetrate the whole dendrites. The direction of their pro-
pagation path is indicated by red arrows. Furthermore, above the dotted line in the BF image, the dislocation lines are invisible in
areas II and III, owing to the shortage of area I. Obviously, shear bands initiate from area I, go through area II, and are terminated in
area III, which proves that the rapid propagation of shear bands has been effectively stopped.

To sum up, a clear survey of dislocation lines gliding on other planes except the close-packed planes confirms that dendrites have
been hardened to a great extent. This feature explains the strong hardness increase with increasing strain. The highly-strengthened
dendrites also promote many secondary shear bands, as shown in Fig. 4(b) (Qiao et al., 2011; Song et al., 2016; Wu et al., 2011).
These branched secondary shear bands consume part of the stored elastic energy, avoiding primary shear bands to propagate across
the whole shear plane (Wang et al., 2009). The formation and propagation of profuse secondary shear bands produces more plasticity
in the glass matrix, in agreement with the pronounced tensile ductility (Wang et al., 2004, 2009). Double slip is widely identified in
Fig. 5 due to the fact that the critical shear stress is simultaneously approached on these slip planes. The pronounced multi-slip
activity reveals that the applied shear stress is large enough to operate several slip systems. The high applied shear stress lies in the
range of the high critical deformation stress for the glass matrix. Meanwhile, the operation of several slip systems within the dendrites
supplies higher resistance to the extension of shear banding. The distinct work hardening and ductility of the present Ti-based
MGMCs can be ascribed to this strong resistance to the propagation of shear bands (Hofmann et al., 2008a; Qiao et al., 2011; Song
et al., 2016; Wu et al., 2011).

3.2.4. Stress distribution
To further understand the process of dislocation motion, the strain field determined by the FEM analysis demonstrates different

dispersion characteristics for samples that are plastically deformed to the same strain of 1%. At this moment, the dendrites have to
enter the plastic stage, while the glass matrix stays in the elastic stage. The stress distribution contour map is schematically displayed
in Fig. 7. The ellipses represent dendrites, and other area in between is the glass matrix. The Young's modulus of dendrites and the
glass matrix used in the FEM analysis are obtained from nano-indentation tests yielding values of 96 ± 2.6, and 128 ± 2.8 GPa,
respectively. The Poisson's ratios of dendrites (νd=0.33) and the matrix (νm=0.30) are obtained from previous studies (Qiao et al.,
2013). As can be seen in Fig. 7, the stress concentration happens at the interface, consistent with our current and previous experi-
mental findings (Hofmann et al., 2008a; Qiao et al., 2013), which manifests the location of the dislocation sources. Due to the
mismatch of the plastic deformation in the dendrites and the elastic deformation in the glass matrix, these dislocations easily pro-
pagate along the direction of the shear stress and pile up. Moreover, this map also indicates that the interface is the preferable site for
shear-band initiation (Sun et al., 2016). Due to the formation and accumulation of dense dislocations within the dendrites, strain
hardening occurs. Once the shear stress due to dislocation pile-up within dendrites reaches the yield strength of the glass matrix,
shear bands initiate at the interface.

Fig. 6. (a) TEM bright-field image of the deformed composites after tension. The SAED patterns of the dendrites and the glass matrix are shown in (b) and (c),
respectively.
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4. Discussion

4.1. Tensile yielding

As the dendrites can impede the rapid propagation of shear bands and promote the multiplication of shear bands, the soft
dendrites play a vital role in enhancing the tensile ductility of the present Ti-based MGMCs (Eckert et al., 2011; Hofmann et al.,
2008a; Qiao et al., 2009a, 2011, 2012, 2013, 2016a; Sun et al., 2015a; Zhang et al., 2014). Compared with typical monolithic BMGs,
which exhibit strain softening, the addition of in-situ dendrites into the glass matrix is capable of avoiding shear localization leading
to the catastrophic failure (Eckert et al., 2011; Hofmann et al., 2008a; Qiao et al., 2011, 2016a). Meanwhile, compared with their
crystalline counterparts, the Ti-based MGMCs show a higher strength on account of the great strength of the glass matrix (Hofmann
et al., 2008b; Wang et al., 2004; Yoo et al., 2012). Hence, the plastic-deformation mechanisms in the current composites are tightly
coupled with the pile-up dislocations in dendrites and shear banding in the glass matrix.

In order to reveal the deformation mechanisms, a dislocation pile-up model (DPM) is established according to the dislocation
motion within dendrites and shear banding in the glass matrix. As schematically shown in Fig. 7, the dislocation pile-ups in the blue
area (dendrite A), together with the generation and propagation of shear bands in the green area (glass matrix), microscopically
promulgate the process during plastic deformation. On the elastic stage, the mismatch of the yield strength and Young's modulus of
both phases leads to the incongruous deformation (Qiao et al., 2011, 2013; Sun et al., 2015a). Microscopically, when the tensile stress
increases to the yield strength of the dendrites, dislocations initiate from the interface, and then, these dislocations slip along the
favorable direction within the dendrites, while the glass matrix remains in the elastic stage (Oh et al., 2011; Şopu et al., 2015; Zhou
et al., 2013). Thereafter, as the applied stress continuously increases, many dislocations are generated from the dislocation sources at
the interface, and move along the direction of shear banding and pile up at the interface (Ma et al., 2014). Through this arrangement,
corresponding to Fig. 7, a higher stress concentration arises at the interface (Zhang et al., 2014).

Similar to polycrystalline alloys, the macroscopic plasticity in MGMCs is caused by the fact that the dislocation slip occurs in many
crystals. The yielding of the MGMCs occurs because the increase of the applied stress results in dislocation motion in the adjacent
crystals. When the shear stress is larger than the yield strength of the glass matrix, shear bands nucleate near the interface, and
propagate rapidly until reaching the adjacent dendrites (Greer et al., 2013). At this moment, plastic deformation has penetrated
through several interfaces and is transmitted among dendrites. Here, the applied normal stress is defined as the yield strength of the
MGMCs.

From these considerations, the schematics of the deformation at the yield point can be constructed, referring to the dislocation
lines on the TEM images. When the applied shear stress, τ*, is approaching the critical value, the first dislocation is driven from the
dislocation source and propagates along the direction of shear banding. Until this dislocation is blocked by an interface, the dis-
location source will generate the next dislocation. According to the DPM, each dislocation suffers the force that comes from foregoing
dislocations, resulting in the distance between the adjacent dislocations becoming longer and longer. The jth dislocation is in
equilibrium when experiencing the applied stress, τ*, and the resultant force, F, from other dislocations. The force, Fj, which the jth
dislocation experiences, is given by (Nabarro, 1947):

Fig. 7. Contour maps of the stress distribution at the moment of yielding of dendrites.
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where G and b are the shear modulus and Burgers vector of the dendrites, respectively, and xi is the distance from the ith dislocation
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The equilibrium equation of the dislocation pile-up group can be calculated, based on the location of each dislocation, which is
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Due to the source of the dislocation is located at the interface of the grain, the distance from the nth dislocation to the first
dislocation, xn, is equal to the diameter of the dendrite arms, d. Considering that the number of dislocation pile-ups, n, is far above 1,
Eq. (3) can be simplified as Eq. (4).
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Equation (4) explains that upon the same stress, more dislocations will be accumulated within the interior of dendrites with larger
sizes. The more dislocations are generated, the larger stress the interface will suffer. In polycrystalline alloys, the interfaces, which
can impede the motion of dislocations effectively, play a key role on strengthening alloys (Li et al., 2010). Here, the glass matrix has a
similar function but a stronger effect than the grain boundaries, since the critical deformation shear stress of the glass matrix, f ', is
very high, owing to the unique amorphous structure. The interfaces suffer the shear stresses caused by the dislocation pile-ups (Oh
et al., 2011). Jang et al. (2010) have reported that a highly-localized-to-homogeneous deformation mode change occurs at a diameter
of 100 nm, without any change in the yield strength. Although the thicknesses of the glass matrix between dendrites are quite
different, the critical resolved shear stress can be considered as a constant.

When the shear stress is smaller than the critical deformation shear stress of the glass matrix, f ', the adjacent dendrite B (Fig. 7)
benefits from the resistance of the glass matrix to prevent further plastic deformation. Once the shear stress reaches f ', shear bands
are generated immediately and extend rapidly until they are impeded by the dendrite B. Then the plastic deformation transfers to
another dendrite, accompanied by the formation of shear bands. Therefore, the interface for dendrites with a larger size exhibits a
lower applied shear stress, τ*, which causes the earlier nucleation of shear bands in the glass matrix (Şopu et al., 2015). Consequently,
in-situ MGMCs with smaller dendrite sizes exhibit higher yield strengths. This deduction is generally confirmed by earlier studies,
including Ti- (Hofmann et al., 2008a, 2008b; Zhang et al., 2014; Wang et al., 2015), Zr- (Cheng et al., 2010; Jeon et al., 2012, 2013,
2016; Kolodziejska et al., 2016), Mg- (Gao et al., 2015; Wang and Xu, 2013), and La-based (Wang et al., 2009) MGMCs.

The establishment of the DPM relays on the interaction between dislocation lines. The critical shear stress, τc, which can cause the
dislocation motion in the dendrite B (Fig. 8), is described by Eq. (5). Once initiated, shear bands are prone to becoming unstable due
to strain softening and propagate rapidly in the glass matrix, accompanying a sudden stress drop at the period of the early de-
formation (Chen and Dai, 2016; Qiao et al., 2016b; Sun et al., 2016; Wang et al., 2009; Zhao et al., 2013). Compared to the yield
strength of MGMCs, the stress drop can be neglected (Antonaglia et al., 2014; Wang et al., 2009). Hence, τc is equal to f '.

When the first dislocation moves forward by a small distance, δx, so do the others. Owing to the dislocation pile-up, n dislocations
along the direction of the dislocation line block. The applied shear stress, τ*, does the work per unit length of dislocation, as given by
nbτ*δx. When experiencing the applied stress of the first dislocation, τ*1, the increase in the energy of the first dislocation is bτ*1δx. In
equilibrium, τ*1= nτ*.

= ′ = =∗τ f τ nτc 1
* (5)

Upon cooling from the high-temperature melt, in-situ MGMCs undergo the nucleation and subsequent growth of dendrites in the
remaining liquid (Qiao et al., 2016a). Lattice defects are rarely found in the as-cast state (Qiao et al., 2011). Therefore, the con-
tribution from redundant dislocations can be neglected (Hansen, 2004). Combining Eqs. (3) and (4) together with the Hall-Petch-like
relationship, the relationship between the applied shear stress, τ, and the diameter of dendrite arms, d, is determined by the following
equation,

= + −τ τ π Dτ d
4

2 ,c0
1/2

(6)

where τ0 reflects the resistance to hinder the plastic deformation within the interior of the dendrites. Apparently, there is a linear
relationship between the applied shear stress, τ, and the inverse square root of dendrite arms, d −1/2.

The Schmid factor of dendrites, m, is considered in the relationship between the normal stress and the shear stress upon uniaxial
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tension. The normal stress can be written as:

= + −σ σ kd ,0
1/2 (7)

where k is a materials constant, with =k Dτ2π
m c4 . The normal stress, σ0, is a constant, which can be interpreted as the lattice friction

in dendrites.
Finally, combining the Hall-Petch-like relationship derived by the DPM with the properties of two phases, the relationship be-

tween the yield strength and the dendrite size in the current MGMCs have been built. MGMCs have a dual-phase microstructure by
introducing secondary phases into the metallic glass. The volume fraction of the glass matrix is over the half of composites. The width
of the glass matrix ranges up to several micrometers and even exceeds the diameter of a portion of dendrites. In addition, differing
from leading dislocation driven by the shear stress to traverse the grain boundary in polycrystalline alloys, the glass matrix in MGMCs
cannot transfer dislocations due to the amorphous structure. Therefore, this Hall-Petch-like behavior is a composite yielding phe-
nomenon. The behavior originates from the fact that the dislocation pile up is the controlling/triggering event and dependent on the
dendrite size and the critical deformation stress of the glass matrix, f’.

Next, the activation of multiple slip systems is taken into consideration, which is common during the plastic deformation of
crystalline alloys, as shown in Fig. 7 (Bishop and Hill, 1951; Hashimoto and Margolin, 1983). When the shear stress simultaneously
approaches the critical shear stress on two of the possible planes and directions, double glide can be activated. As the close-packed
planes of atoms in bcc dendrites, two slip planes (110) and (112) of these possible planes are studied, and the dislocation slip
direction in slip planes is [111]. Although the crystalline aggregate of dendrites is isotropic, the individual dendrite exhibits the
elastic anisotropy characteristic of the crystal symmetry. In order to determine the elastic modulus undergone by the monocrystalline
cubes, it is convenient to convert the elastic constants into an effective elastic modulus (Meyersm and Ashworth, 1982). The de-
termination of Young's modulus of single crystals is described by Eq. (8).

= − ⎛
⎝

− − ⎞
⎠

+ +
E

S S S S l l l l l l1 2 1
2

( )
ijk

i j j k i k11 11 12 44
2 2 2 2 2 2

(8)

where Eijk is Young's modulus along the [ijk] direction, S11, S12, and S44 are the compliances of the dendrites and li, lj and lk are the
direction cosines of the [ijk] direction with respect to the crystal axes. Compliance constants of this Ti-based dendrites are the same as
the unalloyed titanium as an approximation, = × − −S Pa0.998 1011

11 1, = − × − −S Pa0.471 1012
11 1, (Meyersm and Ashworth, 1982).

Hence, the elastic modulus along the [111] slip direction, E111, is 197.9 GPa. Combining with the relationship between the Young's
modulus and the shear modulus, G, in dendrites = +G E

ν2(1 )d
111 , and the materials constant, k, can be expressed as:

=
+ −

k
m

πE τ b
ν ν

1
2 2(1 )(1 )

.d c

d d (9a)

where b is the Burgers vectors and =b 111a
2 .

The yield strength, obtained from the macroscopic uniaxial yield shear stress, is 2.2τ. Here, τ is the shear yield stress of a single
crystal (Bishop and Hill, 1951), whereas, the crystallographic orientation of the dendrites varies from grain to grain, analogous to

Fig. 8. Schematic illustration of the dislocation pile-up model in MGMCs and dislocation motion at the yield point.
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polycrystalline alloys (Kolodziejska et al., 2016). Bishop and Hill have pointed out that the best fit of the Schmid factor in poly-
crystalline alloys, m, based on the Taylor's model, gives a value of about 0.3 (Bishop and Hill, 1951). Then τc can be calculated,

=τ E ε θcosc m 2% . In the metallic glass, θ is the angle under that the shear stress is oriented (Lewandowski and Lowhaphandu, 2002;
Qiao et al., 2016a).

For the current Ti-based MGMCs, the lattice constant of the dendrites, obtained from previous studies, is 0.3203 nm (Qiao et al.,
2011). According to Eq. (9b), the material constant, kc, is 0.43MPam−1/2, close to the experimental material constant,
kE=0.58MPam−1/2, as shown in Fig. 9.

This relationship between σ and −d 1/2 can be verified for many other in-situ MGMCs, as demonstrated in Fig. 9 (Hofmann et al.,
2008a, 2008b; Jeon et al., 2012, 2013; Qiao et al., 2009b; Wang et al., 2015; Zhang et al., 2014). In all these MGMCs, the dendrite
size is controlled by the variation of composition and cooling rate (Jeon et al., 2012; Qiao et al., 2009b; Zhang et al., 2014; Wang
et al., 2015). The value of k varies for different compositions and preparation methods, such as the copper mold suction casting and
Bridgman solidification, as shown in Fig. 9.

Nevertheless, the linear relationship has limitations, and is only suitable for in-situ MGMCs with stable dendrites. The plastic
deformation in such composites is only dominated by the multiplication of dislocations. The MGMCs reinforced by B2 (CuZr) phases
or metastable β phases are not considered in this study on account of the deformation-induced phase transformation and twinning
(Wu et al., 2010, 2011; Zhang et al., 2017b). Transformation-induced plasticity (TRIP) and twin-induced plasticity (TWIP) are
effective methods for plasticity improvement, due to the fact that the local strain in β dendrites is largely released (Hofmann, 2010;
Song et al., 2016; Wu et al., 2011; Zhang et al., 2017b). Hence, the case in MGMCs reinforced by stable dendrites is different from that
reinforced by B2 phases and metastable dendrites. For this reason, this model is not suitable for in-situ MGMCs reinforced by B2
phases and metastable dendrites.

Moreover, the tensile-deformation model of MGMCs with different sizes of dendrites indicates that the dendrite size can become
so small that it may lead to the brittle fracture (Zhang et al., 2014). It is crucial for MGMCs to have suitably-sized dendrites so that
dislocation slip can occur in the dendrites (Oh et al., 2011; Zhang et al., 2014). Hence, the applicability of this linear relationship
depends on the critical size and volume fraction of dendrites in the same MGMCs.

4.2. Mean-field theory for the diameter of dendrites

The sizes of the dendrite arms are different for varying compositions in Ti-Zr-V-Cu-Be MGMCs. The constituent elements, Ti, Zr,
and V, readily form a solid solution, while Be and Cu have the limited solubility in the dendrites (Hofmann et al., 2008b). The volume
fraction of dendrites is essentially determined by the ratio of these two groups of elements, + +

+
Ti Zr V

Cu Be
(atom %), i.e., the atomic

percentage of low solubility elements in MGMCs (Hofmann et al., 2008b; Kolodziejska et al., 2016). The amount of V varying from
near the zero-percent to twelve percent in Ti-based MGMCs has less impact on the size of the dendrite arms (Kolodziejska et al.,
2016). Therefore, in this study, a small change in the amount of V has a minimal effect on the diameter of the dendrite arms, and the
amount of Cu is kept constant in the four investigated compositions. Thus, the ratio of the atomic% of Ti plus Zr to Be,

= +ξ Ti Zr
Be (atom %), can be supposed to a variable influencing the diameter of the dendrite arms.

The yield strength of MGMCs is not only determined by the dendrite size but also the volume fraction. Hence, when discussing the
dependence of dendrite sizes to the ratios of the percentage of Ti and Zr over Be, ξ, the atomic percentage of low solubility elements in
MGMCs should be kept constant to ensure the same volume fraction of dendrites. In this study, the series of compositions of
Ti40Zr24V12Cu5Be19, Ti46Zr20V12Cu5Be17, Ti48Zr18V12Cu5Be17, and Ti50Zr20V10Cu5Be15 MGMCs have the similar ratio of these two
groups of elements. The volume fractions of dendrites of MGMCs, listed in Table 2, are also equal approximately.

Based on these considerations, a quantitative analysis for the influence of composition on the size of dendritic diameters in
MGMCs is conducted. In Fig. 10, the ergodic evolution of the diameter of dendrite arms, d, demonstrates that a complementary

Fig. 9. Linear relationship between the yield strength and the inverse square root of the average dendrite size.
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cumulative distribution (CCD), i.e., the percentage of the number of dendrites with a diameter larger than a diameter, C (≥d), is
nonlinearly dependent on the value of d. According to the double logarithmic curves, it is obvious that smaller diameters follow a
power-law distribution, while the larger diameters do not follow a power-law distribution, but decrease exponentially in probability.
The complementary cumulative distribution functions (CCDFs) for the dendrite sizes in the MGMGs follow a universal scaling
function, which can be approximated well by a power-law distribution function accompanied with a squared exponential decay
function (Qiao et al., 2016b; Tong et al., 2016; Wang et al., 2009):

= −−C d Ad d d( ) exp[ ( / ) ]β
c

2 (9b)

where A is a normalization constant, β is a scaling exponent, and dc is the critical diameter of the dendrite arms. The critical dendrite
arm diameter, dc, is obtained by fitting the experimental data according to SEM images, which extends over a large range of dendrite
diameters following a power-law distribution before turning to the exponential decay. This trend reflects that the scale-free system
self-organizes into a critical state (SOC) (Bak et al., 1987; Wang et al., 2009). As listed in Table 1, the dc values in these MGMCs are
very close to the average diameters.

A mean-field theory (MFT) model predicts the complementary cumulative distribution function (CCDF), C(d), of the diameter of
dendrite arms, d, to indicate the dependence of the diameter to the ratio, ξ, as shown in the inset of Fig. 10 (Denisov et al., 2016).
CCDF is useful for systems with a small number of dendrites (Antonaglia et al., 2014).

= ′− −C d ξ ξ C dξ( , ) ( )λ κ λ( 1) (10)

Here, ′ −C dξ( )λ is a universal scaling function. In MFT, the maximum observed dendrite diameter, dmax, depends on the ratio as
∼ −d ξmax

λ(Antonaglia et al., 2014). Furthermore, =κ 1.50, =λ 2.0 are predicted very well (Antonaglia et al., 2014; Wang et al.,
2009). The two exponents are carefully tuned until the curves lie on top of each other. Combined with fitting the universal scaling
collapse, ′ = ′ −− ′C x A d x x( ) exp[ ( / ) ]β

c
2 , it is found that = ±κ 1.50 0.10, = ±λ 2.25 0.33, and = ± × −x (7.24 0.04) 10c

2μm in the
MFT model for the collapses in these MGMCs. Error bars for the exponents indicate that the range of exponents agrees with the model
prediction using the MFT. xc can be considered as a universal characteristic value that links the critical diameters, dc, to ξ. Besides,

= −x d ξc c
λ is well established with the universal scaling collapse, ′ −C dξ( )λ . Therefore, the values of dc for other ξ can be predicted.

Considering the same composition but varying cooling rates, the dendrite sizes vary in MGMCs (Jeon et al., 2012, 2016; Wang et al.,
2015). Hence, the constants, dc and λ, remain invariable for the same cooling rate and element compositions in the prediction.

Combing with Eq. (9a,b), and based on the values of k and ξ, the yield strength of Ti-based MGMCs can be predicted as well,
expressed as follows:

= +
+ −

−σ σ
m

πE τ b
ν ν

x ξ1
2 2(1 )(1 )

( )c

d d
c

λ
0

111 1/2

(11)

This relationship between σ and ξ in the Ti-Zr-V-Cu-Be MGMCs is well demonstrated in Fig. 11. The green dash-dotted line is fitted
well with the experimental value, and the slope kE= 0.58MPam−1/2. According to the experimental slope, the yield strength of the
Ti-Zr-V-Cu-Be MGMCs can be accurately predicted. The relationship derived theoretically still has a little error (∼2%), as expressed
by the red dash-dotted line. Nevertheless, it can be used to estimate the yield strength of MGMCs conveniently and quickly. As an
additional limitation, in order to predict accurately, an experiment for one of these MGMCs is also needed to correct the value of the
normal stress, σ0.

Fig. 10. Complementary cumulative distribution functions (CCDFs) of the diameters of the dendrite arms in Ti-Zr-V-Cu-Be MGMCs. The inset shows the universal
collapse scaling according to Eq. (9a). The dash-dotted line corresponds to the fitted collapse scaling function.
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4.3. The dependence of volume fraction of metallic glass on yield strength of MGMC

The glass matrix in MGMCs cannot transfer dislocations and plastic deformation in metallic glasses is generally associated with
inhomogeneous flow in highly-localized shear bands (Eckert et al., 2011; Wang et al., 2009). Once the shear stress, concentrating on
the interface, reaches the critical deformation stress of the glass matrix, f’, shear bands are prone to becoming unstable and propagate
rapidly, accompanying a sudden stress drop (Antonaglia et al., 2014; Wang et al., 2009). The stress drop can be neglected because the
stress drop is too smaller than the critical deformation stress of the glass matrix, f’. Shear bands extend rapidly until they are impeded
by another dendrite and the plastic deformation transfers to another dendrite (Eckert et al., 2011; Hofmann et al., 2008b; Qiao et al.,
2011). Based on this consideration, the dislocation pile-up model of MGMC has been established. So far, the yield strength of MGMC
seemingly depends on dendrite and the critical deformation stress of the glass matrix, f’, insteading of the volume fraction of glass
matrix. However, the multiplication of shear bands in the glass matrix must be considered into the discussion of the dependence of
volume fraction on yield strength (Eckert et al., 2011).

SEM observations of surfaces of deformed samples reveal a high density of shear bands, organized in two networks: primary shear
bands and secondary shear bands, i.e., the multiple shear bands, as shown in Fig. 4(b). Intersection and interaction between the two
patterns of shear bands as well as multiple branching and bifurcation are found. The formation of multiple shear bands impede the
extension of subsequent shear bands effectively, which contributes to the improved plasticity in metallic glass (Eckert et al., 2011;
Hofmann et al., 2008b).

At the yield point of deformed MGMC, the glass matrix has entered into the plastic-deformation period and multiple shear bands
have generated extensively. The larger the volume fraction of glass matrix is, the more interactions of shear bands generate. Due to
the contribution of the intersection and interaction on impeding the extension of subsequent shear bands, the MGMC with larger the
volume fraction of glass matrix performs higher strength. It needs to be emphasized that the multiplication of shear bands is not
abundant in glass matrix on account of the early period of deformation.

Therefore, when keep the size of dendrites constant, the MGMC with larger the volume fraction of glass matrix performs higher
yield strength. The influence of volume fraction on yield strength of MGMC is slighter than that of the size of dendrites.

4.4. The work-hardening stage

The strengthening effect upon reloading leads to an improvement of the yield stress, which verifies the distinct work-hardening
capacity (Yang et al., 2016; Zhu et al., 2016). Since the glass matrix has been entering the softening stage, the apparent improvement
of the yield stress is rooted in the strain strengthening of dendrites (Qiao et al., 2011, 2013; Sun et al., 2015a).

During plastic deformation, the explanation for work hardening before Point B (Fig. 3) on the stress-strain curves are as follows:
(i) A stress concentration occurs near the interface through dislocation pile-ups, which causes the formation of multiple shear bands
in the glass matrix (Eckert et al., 2011; Qiao et al., 2009c; Zhang et al., 2017b; Zhou et al., 2013), as demonstrated in Fig. 4(b); (ii)
The shear bands spread from the glass matrix into the dendrites in the form of dislocation lines and are impeded by the resistance
from the movement and entanglement of dislocations (Sun et al., 2015a; Zhou et al., 2013), as demonstrated in Fig. 6(a).

The hardness of the dendrites and glass matrix, characterized by the nano-indentation analysis, varies with the strain in the work-
hardening stage. Compared with that of as-cast samples, the hardness of the dendrites after pre-tensile deformation presents a slight
increase of 190MPa, which elucidates that the dendrites have not been strengthened strongly. According to the strengthening effect,
a large number of dislocations are mainly distributed near the interfaces, consistent with the DPM. This is the reason why the
hardness of the dendrites is similar to that of the as-cast state, and also verifies that the inhibition of dislocation motion through the
interface is the key to the work-hardening stage in MGMCs (Qiao et al., 2009c, 2011). Upon further plastic deformation, a remarkable
hardness increase in the dendrites after reloading is indicative of a strain-strengthening effect. A dense array of dislocations has been
generated and entangled inside the dendrites, which contributes to the further increase of the tensile strength in the present MGMCs.

Fig. 11. The curves of the relationship between the yield strength, σy, and the atomic % ratio of Ti plus Zr to Be, ξ, in Ti-Zr-V-Cu-Be MGMCs.
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5. Conclusions

In summary, crystalline dendrites play a significant role for the tensile yield strength and work-hardening behavior of in-situ
MGMCs. A dislocation pile-up model (DPM) has been established to analyze the effect of the size of dendrite arms and the dislocation
motion at the yield point. In the early stage of plastic deformation, due to the DPM, the dislocations are blocked by the interface so
that the hardening effect in the dendrites is not obvious. As the deformation continues, the multiplication and entanglement of
dislocations promote the retardation of the propagation of shear bands effectively, and the tensile strength of the composites is
enhanced in the work-hardening stage.

Composites with smaller dendrite arms exhibit higher yield strengths in the same alloy system, whose plasticity is only dominated
by dislocations. For similar volume fractions of dendrites, there is a linear Hall-Petch-like relationship between the yield strength, σy,
and the inverse square root of the diameter of dendrite arms, d−1/2, in these composites. The materials constant, k, in this linear
relationship can be calculated on the basis of materials parameters of the MGMCs. The mean-field theory can be utilized to predict the
critical diameter of dendrite arms of MGMCs with the similar atomic percentage of low solubility elements, dc, which is influenced by
the ratio, ξ. Altogether, the present work provides a quantitative relationship for predicting the yield strength of in-situ dendrite-
reinforced MGMCs, conveniently and precisely.
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