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Dilatancy-generated structural disordering, an
inherent feature of metallic glasses (MGs), has
been widely accepted as the physical mechanism
for the primary origin and structural evolution of
shear banding, as well as the resultant shear failure.
However, it remains a great challenge to determine, to
what degree of dilatation, a shear banding will evolve
into a runaway shear failure. In this work, using in situ
acoustic emission monitoring, we probe the dilatancy
evolution at the different stages of individual
shear band in MGs that underwent severely plastic
deformation by the controlled cutting technology.
A scaling law is revealed that the dilatancy in a
shear band is linearly related to its evolution degree.
A transition from ductile-to-brittle shear bands is
observed, where the formers dominate stable serrated
flow, and the latter lead to a runaway instability
(catastrophe failure) of serrated flow. To uncover
the underlying mechanics, we develop a theoretical
model of shear-band evolution dynamics taking
into account an atomic-scale deformation process.
Our theoretical results agree with the experimental
observations, and demonstrate that the atomic-scale
volume expansion arises from an intrinsic shear-
band evolution dynamics. Importantly, the onset
of the ductile–brittle transition of shear banding is
controlled by a critical dilatation.

2018 The Author(s) Published by the Royal Society. All rights reserved.
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1. Introduction
Amorphous materials include a wide range of systems, including granular materials, glasses and
colloids. These materials often undergo a localized deformation in narrow shear zones, ranging
in scale from atomically thin bands to the natural faults of the Earth’s crust [1–7]. In the structural
geology, shear bands show apparent evidence of the both ductile and brittle deformation process,
and are generally classified into three types via the distance to earth surface, such as upper
brittle shear bands (less than 8–10 km) generating a clear discontinuity, lower ductile shear bands
bearing ductile flow (greater than 15 km) and the brittle–ductile shear bands inheriting both
deformation features in the middle zone [8,9]. While shear bands developed in glassy materials
and the Earth’s crust differ vastly in scale, each is made up of a collection of smaller particles,
where the glassy band structure contains a few layers of molecules, while the earthquake fault
is filled with crushed grains of rock. Shear bands in these systems exhibit similar and complex
dynamics, including the brittle and ductile deformation features, strongly dependent on the
microstructure within bands and the constraint applied on the bands. However, it is difficult
to experimentally track any underlying microscopic mechanisms during the evolution of shear
bands due to strong localization in both space and time. This dilemma particularly stands out
in metallic glasses (MGs), a new class of atomic-disordered materials that have gained much
attention due to their attractive and unique properties. In MGs, shear bands are only a few
hundreds of atoms thin and believed to operate fast in less than a few milliseconds [10–12]. In
this paper, we develop an ingenious experiment coupling the severe plastic deformation (SPD)
process for MGs with the in situ acoustic emission (AE) monitoring. Based on this, we reveal a
scaling law of atomically structural change proportional to the evolution degree of shear bands,
and further attempt to theoretically bridge the microstructure and the ductile or brittle behaviours
of shear bands.

Dilatancy as a representative structural change is a universal feature of deformation of dense
amorphous materials in response to shear. Earlier, the dilatancy of granular material was studied
by Osborne Reynolds who noted the disappearance of water under footsteps while walking along
a wet beach [13]. Now, this property is of particular importance in MGs. In crystalline metals,
deformation at constant volume owing to the periodicity along the slip plane provides identical
atomic positions for the sheared material. This situation, however, is not available in MGs. A
sheared portion of MGs does not find such a perfect fit and must leave some holes [14,15]. It is
generally recognized that the fundamental unit process underlying deformation of MGs must
be a local rearrangement of atoms that can involve dilatancy and accommodate shear strain.
Several theoretical models were proposed over the past decades, providing a comprehensive
interpretation of the shear-induced dilatancy feature in the plastic deformation of MGs. For
example, the free volume model proposed by Spaepen [14] ascribes the shear flow to the creation
of free volume via the atomic-scale dilatation effect. Argon [16] suggested that amorphous
plasticity results from the accumulation of shear transformations zones (STZs) occurring within
defective regions few to hundreds of atoms wide; the net effect of STZs is an excess dilatation
that must create at least temporarily additional excess free volume [3,17]. Considerable works
have demonstrated the inherent shear-dilatation coexistence during deformation of MGs by
experiments [18] and simulations [19].

At temperatures well below the glass transition temperature, the plastic deformation of
MGs is prone to be highly localized into shear bands [20–24]. Many works focus on the
nucleation and evolution of shear bands. Gao developed a finite-element scheme to model the
individual processes of shear bands based on the free-volume model [25]. Subhash and co-
workers investigated the evolution of a shear band via the thermomechanical model that took into
account the free volume theory [20,26]. It has been generally accepted that atomic-level volume
dilatation, which generates structural softening and leads to a precipitous drop in viscosity, is
the origin of shear bands and also dominates their evolution process, where the temperature
rise just plays a secondary role [11,20,27–29]. Therefore, understanding structural changes within
shear bands holds the key to unveil the shear-banding dynamics. In this aspect, early attempts
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were done by direct structural imaging of shear bands using transmission electron microscopy
(TEM), or by detecting changes in density in severely deformed specimens. These studies usually
suggest the dilatancy in the form of free volume or density as the primary structural change
within shear bands [23,30–35]. The detailed study of the internal structure of individual shear
bands was performed by Donovan & Stobbs [30] via TEM. They found that there is a change in
the average inter-atomic spacing in the shear band, corresponding to the free volume coalescence
or the density decrease. Wilde et al. revealed that the shear band shows a spectrum of densities
with an average decrease compared to the matrix of about 2.9% [31,32], and Liu et al. found that
the density change between the matrix and shear band ranges from −1 to −12% [35], by using
the high-angle annular dark-field scanning TEM signal. Pan et al. reported that a dilatation of
approximately 1.14% was obtained in a ZrCuNiAl MG by detecting changes in density in severely
deformed specimens [23]. Moreover, higher dilatation of 15% [33] and 20% [34] were measured,
respectively. These measured results of the dilatation values show a significant scatter ranging
from 1% up to 20%. This implies that the shear-band dilatancy strongly depends on the developed
stages of shear banding and is also highly material-specific, as demonstrated theoretically by Jiang
et al. [36]. The volume change in shear bands is of character accumulated as a function of shear
displacement of shear bands, which is reflected as atomic-scale free-volume increase in embryonic
shear bands, and coalesces into non-voids in mature shear bands, as experimentally shown by Yao
and co-workers [37], and as simulated by Zhang and co-workers [38]. Recently, the underlying
mechanism of how nano-voids nucleate and grow, i.e. cavitation, in MGs has been extensively
investigated by Li and co-workers [39]. It is suggested that, depending on the dilatancy degree
within bands, shear bands can display a local ductile flow behaviour, alternatively can lead
to the catastrophic failure with a brittle feature, showing a dilatancy-induced ductile-to-brittle
transition of shear banding. Nevertheless, the above studies could not address the key questions
of primary scientific interest as to the dilatancy evolution at the different stages of individual
shear band and the critical degree of dilatancy that is required to induce the transition of shear
banding.

It is clear that resolving the correlation between the dilatancy level and the evolution degree
of shear banding requires an experimental technique to accurately control the developed stages
of shear bands, and meanwhile to directly probe the fast and collective volume change within
the bands. Many researchers have tried to investigate shear bands through bending, indentation,
uniaxial compression, high-pressure torsion and cold-rolling. These methods, however, are
very difficult to control the degree of deformation within shear bands. Alternatively, the SPD
techniques such as cutting effectively control the shear-band deformation [40–43]. Guo et al.
investigated the flow dynamics of shear bands in cutting and sliding of metals via varying
the indenter rake angle from large negative to positive values [40,41]. Mahato and co-workers
revealed that the shear-band flow can unfold in two phases: an initiation phase which creates
a localized weak zone, followed by a viscous sliding phase across this zone that results in large
localized strains [42]. Most importantly, the evolution degree of shear bands can be well controlled
by tuning individually several control parameters including cutting depth, cutting speed and tool
geometry. Cutting as a successful technology is widely applied to study adiabatic shear bands in
crystalline alloys [41,44–47]. The onset criterion of adiabatic shear bands in crystalline alloys was
firstly obtained by Recht from cutting experiments of titanium [44]. In particular, the evolution
degree of adiabatic shear bands can be controlled via varying the cutting speed or depth [45,46].
In this work, we will show that the cutting method developed previously is still valid to control
the evolution process of nano-scale thick shear bands in MGs. As for how to capture the structural
change in shear bands, an in situ AE can achieve this, which has been widely used in detection of
material defects [48,49].

In this work, an ingenious method consisting of cutting-SPD and in situ AE, which can
monitor the evolution of structural dilatation during shear banding, is applied to investigate
the characterization of dilatancy as well as its correlation to the evolution degree and ductile-
to-brittle transition of shear bands. A scaling law is observed that the dilatancy is linearly
related to the evolution degree of a shear band. We develop a theoretical model of shear-band
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Figure 1. Schematic for the severe plastic deformation of MGs under the controlled machining technology with an AE sensor.

evolution, which bridges the atomic-scale deformation process and the macroscopic shear-band
behaviour. It is further demonstrated that the ductile-to-brittle transition of shear bands is due
to the structural dilatancy. These findings have potential benefits for a deep understanding of
shear-band dynamics of atomic-disordered materials.

2. Experimental procedure
Master alloy ingots with the nominal composition Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vitreloy 1) were
prepared by arc-melting the elements Zr, Ti, Cu, Ni and Be (with a purity of 99.9% or
better) together in a Ti-gettered high-purity argon atmosphere. Glassy rods (Φ10 × 60 mm)
were prepared by suction casting in water-cool Cu moulds and subsequently cut into samples
(5 × 5 × 30 mm). Figure 1 shows the device machining of MGs which is conducted on material
test machine 810 [50]. Here, an orthogonal machining process is taken into consideration, where
a wedge-shaped tool is fixed, and the workpiece with a cutting depth d is moving towards the
tool at the cutting speed V. During machining, the cutting speed V of 10 µm s−1 is fixed and
controlled by the MTS-810, and the alterable cutting depth controlled by the locating device is
50, 65, 75, 90, 150 and 220 µm, respectively. A broadband (100–1000 kHz) piezo-electric AE-sensor
WD (Physical Acoustic Corporation, USA) was used to capture the shear-band signals. Since the
AE sensor cannot be directly mounted on the MG workpiece, a waveguide was used to connect
the AE sensor with the workpiece. The load signal was recorded by MTS-810, while a continuous
AE-stream was sampled at 2 MHz by using a high-resolution 18-bit PCI-2 AE board (Physical
Acoustic Corporation, USA).

3. Experimental results

(a) Shear-band evolution dependence of serrated flow
Figure 2 presents cutting force–displacement curves and the corresponding chip morphologies
at different cutting depths from 50 to 150 µm. The Vitreloy 1 MGs approximately exhibit an ideal
elasto-plastic behaviour, where a serrated flow occurs and its serration amplitude of the cutting
force increases with increasing cutting depth (figure 2a). The serrated flow is widely observed in
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Figure 2. Cutting force–displacement curves (a,b) and the chip morphologies (c–e) corresponding to the depth of 50, 90 and
150 µm, respectively.

the load-constraint deformation such as compressions and indentations. However, the serrated
flow is greatly different between machining and compressions/indentations. As indicated in
figure 1, the MG cutting occurs by a concentrated shear along a distinct narrow region which
is approximately planar, called the primary shear zone (PSZ); this extends from the cutting edge
to the work surface ahead of the tool and is inclined at an angle. The material is unstressed and
does not deform until it enters the PSZ. As it approaches this thin layer, the stress in the material
builds up rapidly. The shear strain is initially elastic, but the yield stress is exceeded quickly and
the plastic flow sets in. The shearing within the PSZ, leads to a decrease of cutting force due to
kinetic softening of the shear band, and a chip separates from the workpiece and moves up along
the face of the tool. The shear banding would arrest as it is taken away from the PSZ by the chip
flow. When the new material enters into the PSZ again, the cutting force increases and the new
shear-band operation with initiation, propagation and arrest will reoccur. Therefore, it is believed
that serrated flow behaviour of MGs is attributed to the repeated shear-band processes and the
degree of serrated flow is dependent on shear-band evolution [45]. As the cutting depth increases,
a transition from the stable to unstable serrated flow is observed, as well as a transition of chip
morphologies from continuous to discontinuous chips as shown in figure 2b,e at 150 µm depth
of cut. Similar result is also found in the case of 220 µm. As the chip morphologies containing
the serrations and its characteristic sizes is largely related to the shear-band evolution dynamics
in PSZ [46], a scanning electron microscope was used to characterize the chip morphologies to
uncover the correlation between shear banding and serrated flow.

Figure 3a displays typical serrated chips morphology during machining of Vitreloy 1 MGs
at 90 µm depth of cut. It can be clearly seen that serrations are nearly periodic with constant
spacing on the micrometre scale in figure 3b. Figure 3c presents a high-magnification micrograph
of an area marked ‘I’ in figure 3b, showing that primary shear bands characterize serrated chips
and secondary shear bands lay between serrations. Figure 3d is the free surface of chips, as
right-side view of chips in figure 3a. Interestingly, a regular lamellar structure with a constant
spacing of several micrometres (figure 3e,f ) clearly emerges. Furthermore, no characteristic
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Figure 3. (a) The typical serrated chip morphology of Vitreloy 1 MG at a 90 µm depth of cut; (b) enlarged view of the chip; (c)
details corresponding to square ‘I’ in (b); (d) the right-side view of the chip; (e,f ) details corresponding to square ‘II’ in (d) at
different magnification.

fracture patterns, such as vein-pattern and dimple, are observed on both surfaces of this lamellar
chip. It is reasonable to conclude that the serrated chips result from periodic primary shear-
banding processes, originating at the tool-contact surface, quickly propagating towards the free
surface (figure 3d) and subsequently shearing in a simultaneous fashion in the PSZ (as marked
in figure 3f ). From the viewpoint of phenomenology, the serrated chips during MG machining
are very similar to the formation of serrated chips in crystalline alloys. Both of types of chip
form via repeated shear banding in the PSZ due to the interplay of tool and workpiece. As for
the crystalline alloys, the serrated degree of chips is dependent on the cutting depth. Here a
similar result is obtained for MGs. Figure 4 shows a clear increase in the degree of serrations with
increasing cutting depth at a fixed cutting speed. A recognizable serration usually corresponds
to a shear-banding event, which is confirmed in compression [23] and bending [21]. During
the serrated chip formation, a serration is distinctly distinguished by an obvious shear step.
Therefore, it is reasonable to believe that one primary shear-band forms inside the PSZ and leads
to an associated serration. The shear band could evolve to a certain degree before it is taken
away from the PSZ due to the chip flow. Just because of the shear-band evolution, the shear front
surface becomes visible, which makes the chip formation appearing to be serrated. The degree
of serrations hence reflects the evolution degree of shear bands. Meanwhile, the evolution degree
of shear bands can also be represented by the spacing of serrations. Figure 5 shows the spacing
of serrations increases with cutting depth, meaning the more developed shear bands. With the
observation of the degree and spacing of serrations, tracking shear-band evolution in MGs is
achieved via the controlled machining.

At the cutting depths from 50 to 90 µm, a stable serrated flow corresponding to the continuous
chips is observed. However, as the depth reaches a certain value such as 150 or 220 µm, the chips
become discontinuous, indicating instability of serrated flow as shown in figure 6. A potential
underlying microscopic picture can be postulated by drawing an analogy to the deformation
behaviour of shear bands in the structural geology. According to the deformation feature, a
discontinuity exists in brittle shear bands, while the deformation is accomplished entirely by
ductile flow in ductile shear bands [1,8,9]. In analogy to the transition from the continuous to
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Figure 4. The typical serrated chips morphologies at the different cutting depths. (a–d) The depth of 90, 75, 65 and 50 µm,
respectively.

discontinuous chips as MGs under machining, ductile shear bands induce stable serrated flow,
while brittle shear bands as runaway shear failure give rise to the instability of serrated flow.

(b) Acoustic emission measurements
In situ AE testing provides a powerful method to gain further insight into the characterization of
the shear-banding process in MGs [48,49]. A definitive method for evaluating the characteristic
parameters of shear-band nucleation and propagation is still missing. In this regard, AE
measurements may represent a potent alternative method because of their extremely high
sensitivity with regards to the detection of elastic wave propagation by small-scale structural
rearrangements and the high acquisition rates possible. Inspired by the previous work [49],
an AE was used to capture the structural dilatancy associated with the shear-band evolution.
During the machining of MGs, a primary shear band in the PSZ can be viewed as cooperative
shearing process of a collection of STZs, where STZs change into a loose configuration with
a larger volume, resulting in dilatancy [28]. Such rapid and local structural changes generate
transient elastic waves that can be captured by the AE sensor, as shown in figure 7. An overview
of AE signals and the corresponding cutting force curve at the cutting depth 75 µm are shown in
figure 8a. Typical serrations are observed in the force signal, indicative of an intermittent, stick-slip
like primary shear-band operation. Comparing the high AE signals to features in the force–time
curves reveals a clear correlation between the occurrence of serrations and enhanced AE activities
(figure 8b). Figure 8c is a close-up view of a single high signal shown in figure 8a. The main AE
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Figure 5. Free surface morphologies of chips at the different depths of cut. (a–d) The depth of 90, 75, 65 and 50 µm,
respectively.

100 mm 100 mm
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Figure 6. Morphologies of discontinuous chips at the depth of (a) 150µm and (b) 220 µm.

signal shows a rise region with approximate time 100 µs. Continuous attenuation of the signal
then follows, leading to a typical tail which is generally attributed to resonances within the sensor.
Additionally, there are some low AE signals between the high signals, which correspond to the
secondary shear bands. As for the other cases (50, 65 and 90 µm), the similar results are obtained
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Figure 7. Schematic of the AE sensor capturing structural dilatancy during shear banding.

and not shown here. Abundant experiments and MD simulations capture free-volume evolution
as the main picture of structural evolution in the shear-band process [18,19,25]. Therefore, it is
reasonable to believe that structural evolution in both initiation and evolution of shear bands can
be captured by AE monitoring.

The AE signal is attributed to a collective atomic-scale mechanism that induces a local volume
expansion during shear banding. The analytical solution of shear-band dilatancy δV/V with the
associated AE signals is obtained

δV
V

= (πc1r)(λ+ 2G)
λ+ 2G/3

kUptr

2V
, (3.1)

where the total volume change is δV normalized with respect to the volume V of primary shear
band to determine the degree of shear-band dilatancy δV/V, c1 is the compression wave speed, λ
is Lamé’s constant, G is the shear modulus, r is the distance from the dilatancy source to the AE
monitoring, k is the sensor calibration factor used to convert the measured amplitude (in volts)
into units of surface displacement (metres), Up and tr are the voltage and the rise time from the
first threshold crossing to the peak amplitude as shown in figure 8c. The details of the solution
are presented in appendix A.

Figure 9 shows histograms of values of shear-band dilatancy determined from hundreds of AE
transients at the different cutting depths. Three-dimensional sizes of shear band are an assumed
thickness of 15 nm [49], a width of 5 mm equivalent to the width of the MG workpiece and a length
of d/sinφ, where d is the cutting depth and the rank angle is taken to be φ= 15° [45]. The rest of
the calculated parameters are as follows: λ= 90 GPa, μ= 35 GPa, c1 = 3950 ms−1, r = 5 mm and
k ∼ 0.5 × 10−12 m mv−1. Using Gauss fit for histograms, the mean values of shear-band dilatancy
are 14.6 ± 0.4%, 11.9 ± 0.2%, , 9.9 ± 0.4%, and 8.2 ± 0.3%, at corresponding depths of 90, 75, 65 and
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50 µm, respectively. As for the cases of depths of 150 and 220 µm, the continuous chips change into
discontinuous chips and fracture generate giant overshooting signals, which seriously interferes
with the signals of shear bands. A similar phenomenon can be also observed in MGs tested in
tension [51]. Hence, the critical shear-band dilatancy close to fracture is obtained via a shear-
band evolution model not AE signals, which will be discussed further below in detail. It is
remarked that these values of dilatancy increase with the increase in cutting depth. Since the
similar correlation between the evolution degree of shear bands and the cutting depth based on
our experimental results, we can conclude that dilatancy increases with increasing the evolution
degree of shear bands.

The rationality of shear-band dilatancy can be further supported by comparison with related
work. A series of attempts were made to measure the shear-band dilatancy by detecting
changes in density or structural imaging of shear bands using TEM were done. A dilatancy
of approximately 15% has been obtained subjected to extensive inhomogeneous deformation
due to rolling [33]. Moreover, a higher dilatancy of approximately 20% has been measured [34].
Meanwhile, Shao et al. [37] have observed a high-resolution TEM image of an amorphous shear
band with two distinct grey and white zones, corresponding to 4.5 and 11.8% volume dilatation,
respectively. Jiang et al. [36] have developed a model for predicting the shear-band dilatation
and concluded that mature shear bands possess higher dilatation (approx. 11.28%) than initially
evolved, ‘young’ shear bands. Our results agree well with theirs. More importantly, the present
result can clarify why the shear-band dilatation (0.5∼8%) [49] is below those reported in any
earlier study. We note that the dilatation values [49] are associated with the shear-band initiation.
However, earlier studies usually performed ex situ measurements on mature shear bands. The
underlying mechanism can be explained by the following physical picture. At the initial stage
of deformation, cooperative rearrangements among atomic clusters take place and the excess
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free volumes are gathered together to form sub-nano ‘defects’. Then the individual nano-voids
incubate and grow up. As further developing, the nano-voids prefer to extend their volumes
along the shear bands and coalesce with other voids. This limits the diffusion of free volume and
keeps the dilatation at a relatively high level. After some nano-voids coalescence, a few micro-
cracks will form at different positions along the shear bands. These works further confirm that
the dilatancy increases with increasing the evolution degree of shear bands. In the following, we
have a detailed discussion on the quantification of this correlation and the influence of dilatancy
on the transition of ductile-to-brittle shear bands, through developing an evolution model of shear
bands in MGs.

4. Theoretical analysis

(a) Shear-band evolution model
As for machining of crystalline alloys, considerable works focus on the chip formation [44,45].
Based on the momentum diffusion model, theoretically described the evolution of periodic shear
bands in the machining of a Ti-based alloy [45]. As for the amorphous alloys, Jiang & Dai [27]
developed a coupled thermomechanical orthogonal cutting model to describe the lamellar chip
formation. The behaviour of shear-band evolution during MG machining is still lacked. In this
regard, we attempt to interpret the dynamics of shear-band evolution by relating atomic-scale
deformation process to macroscopic shear-band behaviour. As indicated in figure 10a, we assume
the tool is in contact with the MG workpiece over an area A = Cw, where w is the width of contact
and C is the contact length. Experimental observations indicate that C is of the same order of
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Figure 10. (a) One-dimensional shear-band evolutionmodel of orthogonal cutting in the PSZ and (b) corresponding equivalent
spring slider model with a shear band in the PSZ viewing as cooperative shearing process of a collection of STZs.

magnitude as the depth of cut d. We simplify the geometry by assuming that φ=α, and we
neglect the friction and heating caused by it as the chip slides up the tool face due to the low
cutting velocity [45]. Thus, we assume the tool exerts a force on the chip over the contact area A
in the direction perpendicular to the face of the tool, causing the chip to deform. In the present
development, this deformation process is treated as a local compression and there is an elastic
stress. Considering that one end of the chip is of extrusion and the other end is stress-free, we
introduce a concept of local stress zone to simply characterize the elastic stress distribution of the
chip. The elastic stress is concentrated inside the local stress zone with a width λ. The elastic stress
gives rise to a shear stress τ to build up in the PSZ. Initially, this shear stress will cause the material
in the PSZ to deform elastically, but eventually τ will exceed the yield stress τ y of the material,
and a primary shear band will nucleate in the PSZ. For a material whose deformation hinges
upon a shear-banding process, inclusion of the influence of the testing machine besides that of the
sample in the study of the mechanical behaviours of the material is inevitable and necessary [52].
To understand the shear-band dynamics, we consider a spring-sliding-block model equivalent
to that of orthogonal cutting, as shown in figure 10b. A block with a spring of equivalent
stiffness kS = E dw/λ (E is the elastic modulus), which represents the chip, is pushed by a spring
of stiffness kM at a constant velocity VS = V0 cosφ, which represents the integrated influence
of the tool machine. A thin deformation layer, i.e. the PSZ, lies between the block and MG
workpiece. In this workpiece-chip-tool-machine system, three basic equations are obtained via
the displacement continuity condition VSt − ∫t

0 Vchipdt = xS + xM, force-balance condition of two
springs kMxM = xSkS and the kinetic equation of this system xSkS − τwL = mV̇chip, in which Vchip
and L denote, respectively, the velocity and width of the chip; xS and xM are effective compressive
displacements of chip and tool-machine springs along the direction x; m is the effective inertia
mass of the system.
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Substituting the displacement condition and force-balance condition into the kinetic equation,
then the kinetic equation can be written as:

kSkM

kM + kS

(
VSt −

∫ t

0
Vchipdt

)
− τwL = mV̇chip. (4.1)

The above equation indicates the material in the PSZ undergoes an elasto-plastic shear
deformation during cutting. Initially, this low shear stress τ causes the material in the PSZ to
deform elastically. As the τ reaches the yield stress, some local regions in the PSZ preferentially
experience shear transformations around high structural disorder. Then shear-band nucleates
in these regions, quickly propagates to the free surface, and eventually, a subsequent shearing
proceeds in a cooperative manner. It is assumed that, at a time t = t1, shear band starts to
slide along the direction x and causes a shear displacement ψ = ∫t

t1
Vchipdt, which is quite

large compared with the elastic shear displacement. Therefore, ψ ≈ ∫t
0 Vchipdt and the governing

kinetic equation for this system after activation of the shear band becomes

kSkM

kM + kS
(VSt − ψ) − τwL = mψ̈ , (4.2)

where ψ̈ is the second-order time differential of ψ and τ is internal resistant shear stress of
the shear band that can be given by the constitutive law of the MGs. Defining the elastic
constant k = kSkM/[wL(kM + kS)] = dE/[Lλ(1 + S)], where S is defined by S = kS/kM = E dw/(λkM)
and called as the compound stiffness, equation (4.2) changes into

k(VSt − ψ) − τ = Mψ̈ (4.3)

with M = m/(wL). Here k and M can be regarded as the stiffness and the inertia of the system
per unit area, respectively. From the equation (4.3), one can see that sliding of the shear band in
PSZ is determined by the competition between the k(VSt −ψ) term and the τ term, as the former
term reduces the driving stress while the latter one reduces the resistance in the flowing shear
band. The stable stop-and-go sliding of the shear band will cause flow serration in the cutting
force–displacement curve, while the breaking of stability will result into macroscopic quasi-brittle
behaviour. Hence it is necessary to describe the dynamics of shear banding.

Shear banding can be viewed as shear process of a collection of STZs where the constitutive
deformation law can be described by the STZ theory. The theory relates the plastic strain rate
to the shear stress and internal variables. The macroscopic strain rate in the shear band is
proportional to two factors: the strain rate of the individual STZ governed by the shear stress
and the number of STZs contained in the band associated with the internal variable. Here we
use the cooperative shearing model recently proposed by Johnson & Samwer [53] to describe the
behaviour of an individual STZ and some internal variables and to determine the total number of
STZs. The cooperative shearing model is mainly based on the concept of inherent states and the
potential energy landscape, and considers that the mechanical instability of an STZ is related with
the stress-induced destabilization of individual inherent state or local minima of potential energy
landscape in MGs. Therefore, a correlation between structure of MGs and their energetics can be
well established. The potential energy barrier for an activity of a STZ is biased by an applied shear
stress. The inelastic strain rate for an individual STZ spanning the barrier is expressed as:

γ̇ = γ̇s exp
(

− Wτ

kBT

)
, (4.4)

where γ̇s is the characteristic strain rate for per STZ transition, kB is the Boltzmann constant, T is
the temperature and Wτ is the energy barrier to overcome at a finite shear stress τ . Treating the
behaviour of STZs as an Eshelby-type inclusion problem and taking shear-induced dilatancy into
consideration [54], it is easily shown that Wτ =Ω(4ζ 2

s /A − ζs)(τy − τ )2/μ, whereΩ is the volume
of an STZ, A = 2ζ s − 4ζdc2(1 + ν)/[3(1 − 2ν)], ζ s = 15(1 − ν)/(7 − 5ν) and ζd = 1.5(1 − ν)/(1 − 2ν)
are the Eshelby factors for pure shear deformation and a dilatancy, respectively. Thus, equation
(4.4) can generally give a constitutive relation of the strain rate γ̇ as a function of the applied
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shear stress τ . However, to fully describe the dynamics of the shear band, we note that γ̇ is also
a function of an internal variable characterizing the structural state of the glass, such as free
volume [3,14] or effective disorder temperature [55]. In principle, free volume could be related
in important ways to the effective disorder temperature [56]. Spaepen [14] has introduced an
important idea by postulating the ‘flow defect’ density n is directly determined by free volume
ξ in the system, via a relation of the form n ∝ exp( − 1/ξ ). Similarly, Falk & Langer [17] have
proposed that the total number of STZs is proportional to the Boltzmann factor exp(−1/χ ), where
χ is the effective disorder temperature. In principle, an STZ as the non-structural defect is roughly
analogous to the ‘flow defect’. Therefore, the activation of STZs is statistically related to the free-
volume concentration [57]. Meanwhile, the free-volume concentration is directly associated with
the shear-band dilatancy [36]. Eventually, the free volume is involved and the plastic strain rate
in the shear band becomes

γ̇ = γ̇s exp
(

− Wτ

kBT

)
exp

(
− 1
ξ

)
. (4.5)

Following the self-consistent dynamic free-volume model proposed by Johnson et al. [58] and
used by Jiang & Dai [59], the free-volume evolution in the shear band can be expressed as:

ξ̇ = G − H, (4.6)

where G = Rγ̇ and H = (4D/δ2 + Vf/δ)(ξ − ξ0). The first term on the r.h.s. accounts for the
production rate G of free-volume concentrate, where G is chosen to be linearly proportional to
the plastic shear strain rate and the parameter R describes the molar volume produced by a unit
plastic shear strain. The second term H is the flow rate of free-volume concentrate from the shear
band to the matrix consisting of diffusivity and convection. The diffusivity that is approximated
by a second-order difference over the shear band, should vary with the strain rate, so that D = �2γ̇ ,
where � is a length scale that corresponds to the radius of an STZ. The convection is that the net
inflow is divided by residence time in the shear band; where Vf is the material convection velocity
due to chip flow as shown in figure 10b and Vf = V0sinφ. ξ and ξ0 are free-volume concentrate
inside and outside the shear band, respectively.

Uniting equations (4.3), (4.5) and (4.6), the shear-band evolution can be analysed. Guided by
the literature data, the values for the material constants are used in our shear-band evolution
model. Using the STZ radius as the diffusion length of �= 1 nm [36] will result in a STZ volume
of Ω = 4 × 10−27 m−3. The parameter c is 0.093 [54] and the Poisson ratio ν is 0.36 [28]. The
characteristic strain rate for per STZ transition is γ̇s = 1013 s−1 [60]. The free-volume parameter
ξ0 = 0.05 [28] and the parameter R is 0.027 [61]. The shear-band thickness is taken to be δ= 15 nm
[49] and the yield stress of BMG is τ y = 1 GPa. The cutting velocity is V0 = 10 µm s−1 and the
width of contact between the tool and the BMG workpiece is w = 5 mm. The value for m has
been suggested to be between 10 and 100 kg [52]. In this work, we would set m = 20 kg. The
machine stiffness kM in the present work is experimentally determined as 6 × 107 N m−1 via the
compressive load–displacement curve of the testing machine without sample at a loading rate of
10 µm s−1. The width of the local stress zone is difficult to experimentally determine and is still an
open question, which is dependent on the cutting depth, the cutting velocity and the mechanics
properties of MG workpiece. But here we shall simply assume that λ is constant and equals 20 µm.

Figure 11 presents the prediction of evolution of sliding speed ψ̇ , shear displacement ψ and
free-volume concentration increment ξ − ξ0 inside the shear band at the different cutting depths,
all as a function of shear-band sliding time. For the cutting depth d =50, 65, 75 and 90 µm, the
sliding clearly goes through an acceleration–deceleration–stop process (see the velocity plotted
in figure 11a). When the shear-band stops, the shear displacement as well as the free-volume
concentrate increment ξ − ξ0 within the shear band, increases with increasing cutting depth, as
shown in figure 11b,c. Furthermore, the predicted free-volume concentrate increment compares
very well with the range observed in experiments for the four different cutting depths as shown in
figure 12. In these small cutting depths, the serrated flow is stable and the formation of continuous
chips indicates the ductile shear band-dominated macroscopic deformation. However, for the
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larger cutting depths with d =150 and 220 µm, both the shear displacement and the free-
volume concentrate diverge (not stop), as shown in figure 11a–c. Stable serration would then
be impossible. Indeed, the formation of discontinuous chips in the cutting depth of 150 and
220 µm shows the runaway failure. The origin of catastrophic instability is the rising dilatancy. For
these larger cutting depths, the shear band accelerates continuously (figure 11a) and inevitably
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turns into a brittle stage during a single sliding event. We confirm an intrinsic correlation
between the atomic-scale dilatancy and the dynamics of shear-band evolution, as well as the
dilatancy-induced ductile-to-brittle transition of shear bands.

(b) Ductile-to-brittle transition of shear bands
The ductile-to-brittle transition of shear bands, a physically unstable event, can be regarded as the
appearance of mathematical instability in the ordinary differential equations governing the shear-
band evolution. First, we non-dimensionalize these equations using the following parameters:
temperature T0 = W0/kB, cutting speed V0, yield shear stress of the MG τ y, cutting depth d, where
W0 =Ω(4ζ 2

s /A − ζs)τy. The parameters can thus be redefined as follows: flow stress τ̃ = τ/τy,
shear displacement ψ̃ = ψ̃/d, plastic strain rate ˙̃γ = γ̇ d/V0,shear-band thickness δ̃ = δ/d, velocity
ṼS = VS/V0 and Ṽf = Vf/V0, temperature T̃ = T/T0, diffusion length �= �̃/d, spring constant k̃ =
kd/τy and Johnson’s damage number M̃ = (mV2

0/wLd)/τy as indication of shear-band behaviours
[62]. The non-dimensional equations are

k̃(ṼS t̃ − ψ̃) − τ̃ = M̃ ¨̃
ψ , (4.7)

˙̃γ = ˙̃γs exp

[
−(τ̃ − 1)2

μ̃T̃

]
exp

(
− 1
ξ

)
(4.8)

and ξ̇ = G̃ − H̃ = R ˙̃γ −
(

4�̃2 ˙̃γ
δ̃2

+ Ṽf

δ̃

)
(ξ − ξ0). (4.9)

The instability of shear banding is investigated through a linear perturbation analysis, i.e.
seeking an instability solution with respect to small perturbations to the steady solution. The
steady solution (Ṽc, ψ̃c, ˙̃γ c, τ̃c, ξc) satisfies (d2ψ̃c/dt2, dγ̃c/dt, dξc/dt) = 0. For small perturbations,
it is assumed that (δṼ, δψ , δτ̃f, δ ˙̃γ , δξ ) = (V∗,ψ∗, τ∗, γ̇∗, ξ∗) exp(αt), where (V∗, γ̇∗,ψ∗, ξ∗, τ∗) are
small constants that characterize the initial magnitude of the perturbation and α is related to
the initial rate of growth. The stability of sliding is now determined by the sign of the real
part of α: if Re(α)< 0, the sliding is stable; if Re(α)> 0, it is unstable. For later use, let us
introduce the notation: Ψ̃Ṽ = (∂Ψ̃/∂Ṽ)c (strain rate hardening) and Ψ̃ξ = −(∂Ψ̃/∂ξ )c (free-volume
softening), where τ̃ = Ψ̃ ( ˙̃γ , ξ ) is an expression of dimensionless constitutive law. Since G̃ and
H̃ are a function of ˙̃γ , and ξ , we also define the following parameters: G̃ ˙̃γ = (∂G̃/∂ ˙̃γ )c and

G̃ξ = −(∂G̃/∂ξ )c, characterizing the creation rate of ξ due to itself and strain rate; H̃ ˙̃γ = (∂H̃/∂ ˙̃γ )c

and H̃ξ = (∂H̃/∂ξ )c, characterizing the flow rate of ξ due to itself and strain rate. Substituting
the instable solution into equations (4.7)-(4.9) and then only considering terms that are of first
order in (δṼ, δψ , δτ̃f, δ ˙̃γ , δξ ), the dimensionless spectral equation for the initial growth rate α of
the perturbation is derived by the following form:

α3 + a1α
2 + a2α + a3 = 0, (4.10)

where the coefficients of this polynomial are defined by a1 = Ψ̃Ṽ/M̃ + (H̃ξ + G̃ξ ), a2 = k̃/M̃ +
(H̃ξ + G̃ξ )Ψ̃Ṽ/M̃ − Ψ̃ξ (G̃ ˙̃γ − H̃ ˙̃γ )/(δ̃M̃) and a3 = (H̃ξ + G̃ξ )k̃/M̃.

Thus, the question of stability of the linearized problem becomes basically algebraic in nature
and investigates the signs of the real part of the roots of spectral equation (4.10). According to
Routh–Hurwitz criterion and introducing two new dimensionless variables of M̃N = M̃/δ̃2 sinφ
and k̃N = (1 + S)k̃, the necessary and sufficient condition for the instability of shear-band sliding
is obtained:

Φ(S, M̃N) =
[

(1 + S)(M̃NP + 1)Q

k̃N

]
> 1, (4.11)

where Φ(S, M̃N) is defined as an instability index; P = (H̃ξ + G̃ξ )δ̃2 sinφ/Ψ̃Ṽ and Q = (G̃ ˙̃γ −
H̃ ˙̃γ )Ψ̃ξ/δ̃ + Ψ̃Ṽ(G̃ξ + H̃ξ ). It can be readily seen from (4.11) that the instability index depends on

the external variables (compound stiffness S and the damage number M̃N), but also the intrinsic
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Figure 13. Compound stiffness S and damage number M̃N dependence of instability phase diagram of shear-band sliding.

variables which consist of the creation of free volume (G̃ξ , G̃ ˙̃γ ), and flow of free volume (H̃ξ , H̃ ˙̃γ ),

the strain rate hardening Ψ̃Ṽ and free-volume softening Ψ̃ξ . Consider that these intrinsic variables
also are decided by the two external variables. Therefore, the stable shear banding is controlled by
the compound stiffness S and the damage number M̃N, where the former indicates the critical size
scales with the machine stiffness of the test machine and the latter suggests the critical velocity
scales with the shear strength of MGs. ForΦ < 1, the initial perturbation on the shear-band sliding
will decay with time, consequently, the sliding of shear bands is stable and shear bands exhibit
the ductile behaviour, leading to the macroscopic serrated chips. Conversely, for Φ > 1, the small
initial perturbation grows exponentially and results into instability of the sliding, where the shear
bands as a runaway shear appear brittle feature and lead to the discontinuous chips. Therefore,
the ductile–brittle transition of shear bands occurs at the critical condition of Φ = 1.

The plastic deformation through shear banding is recognized as an instability process, which
has been demonstrated to be characterized by the shear-band instability index (SBI), proposed by
Han et al. [22]. The SBI is controlled by the sample size and the machine stiffness, providing key
ingredients to understand the shear-band dynamics of BMGs.

Here, we propose an instability index Φ to characterize the observed ductile-to-brittle
transition of shear bands during the cutting of MGs. This instability index is controlled by the
compound stiffness and Johnson’s damage number. The compound stiffness is proportional to
sample size (the cutting depth of MGs) and inversely proportional to machine stiffness. The
Johnson damage number is proportional the kinetic energy of the workpiece-chip-tool-machine
system and inversely proportional to the material yield strength. Based on equation (4.11), a
map for the transition can be plotted as a function of S and M̃N, as shown in figure 13, where S
increases with cutting depths ranging from 20 to 1000 µm at a fixed equivalent machining stiffness
kM = 6 × 107 N m−1, and M̃N increases with the cutting velocity ranging from 10−6 to 10 m s−1.
For M̃N < 104, corresponding to the cutting velocity less than 10−2 m s−1, the transition occurs as
S increases to a critical value and the instability is solely dominated by S. In this situation, these
two instability indexes are of the same physical connotation despite the different load conditions
(compression and cutting). However, for M̃N > 104, corresponding to the cutting velocity is more
than 10−2 m s−1, the instability always occurs no matter how S changes and the M̃N as the sole
factor determines the process. The instability index is dominated by the Johnson damage number.

Incorporation with the cutting velocity of our experiments, the instability is reduced to
Φ(S) = (1 + S)Q/k̃N > 1. In order to verify the validity of the instability index, its variation at
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the experimentally cutting speed of 10 µm s−1 and the machining stiffness of kM = 6 × 107 N m−1

is illustrated in figure 14. The ductile or brittle shear band is separated by the critical cutting
depth dcr = 106 µm, which can be theoretically predicted viaΦ = 1. As the cutting depth is smaller
than dcr, the deformation of shear bands is stable and ductile behaviour of shear bands induces
the serrated chips; otherwise, it is unstable and the discontinuous chips occur. The prediction of
instability index is in a good agreement with the experimental results. Therefore, the instability
index is valid to predict the ductile-to-brittle transition of shear banding.

Through the instability index, a critical cutting depth dcr associated with the transition of shear
banding, can be obtained. And then by combining the dcr with the shear-band evolution model
described in section (a), both the free-volume concentrate increase and the shear displacement
of a shear band can be calculated. It is a reasonable approximation to take the maximum
value of free-volume concentrate increase as the critical dilatancy (δV/V)cr associated with the
transition of shear bands, as well as the corresponding critical shear displacement ψc. Following
Han et al. [22], we choose the values of machine stiffness kM varying from 2.28 × 107 N m−1 to
15.9 × 107 N m−1. Figure 15a show that values of the critical dilatancy (δV/V)cr nearly maintain a
level of 16.7%, which confirms that the intrinsic dilatancy induces the ductile-to-brittle transition
of shear banding, and the critical cutting depth dcr increases with the machine stiffness, which
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suggests that the higher machine stiffness retards instability. Here, the near constant value of
critical shear displacement ψc ∼ 16.5 µm is obtained under the different machine stiffness, as
shown in figure 15b. It is commonly assumed that a runaway instability of serrated flow initiates
when the shear displacement on a particular shear band reaches a critical value ψc. The value
of ψc depends on the alloy and the loading condition, but is typically taken to be on the order
of tens of micrometres [63]. Spaepen and Turnbull have predicted the dilatation limit between
15% (plane stress) and 20% (plane strain) by taking the example of a small edge crack in an
amorphous Pd–Si ribbon pulled in tension [64]. Cahn et al. have reported that a dilatation was
about 15% in a PdCuSi metallic glass subjected to rolling [33]. The critical dilatancy at 16.7%,
corresponding to the transition of ductile shear band to brittle shear band, is roughly consistent
with these works. In addition, in the machining of metallic glass at the low cutting velocity of
10 µm s−1, the deformation of shear banding can be approximately isothermal via the analysis of
the Fourier number Fo [65]. Therefore, the temperature rise in a shear band is small and the effect
of the temperature rise on the transition can be reasonably ignored.

Noting that a ductile–brittle transition of shear bands occurs when the shear displacement
reaches a critical value, we define an important dimensionless parameter X =ψ/ψc(0 ≤ X ≤ 1),
describing the evolution degree of shear bands, in order to uncover the intrinsic relationship
between the dilatancy and the evolution degree in shear bands. The case of X = 0 implies that
the nucleation of shear bands and the case of X = 1 indicates an up limit of ductile shear-band
evolution and an emergence of the transition. Incorporation of the AE measure results and the
evolution of free-volume concentrate using shear-band evolution model, the correlation law
between the dilatancy δV/V and the evolution degree of the shear-band X is revealed from
experiments and simulations in figure 16, where X is calculated via a shear-band evolution model
at the different cutting depths. It clearly reveals an increase of dilatancy with an increase of
the evolution degree. Moreover, as a shear-band nucleates with zero shear displacement, the
corresponding dilatancy of 1.2% is obtained via the linear fitting of experimental results. The
predicted dilatancy of 1.2% at X = 0, is very close to 2% [49], where they mainly focused on the
dilatancy at the shear-band initiation.

5. Conclusion
An ingenious experiment is specially designed to investigate the atomic-scale structure change
inside shear bands of MGs. The different evolution degree of the shear band is obtained through
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machining with varying the cutting depth, and a quantitative analysis of corresponding AE
waveforms gives an in situ estimation of the dilatancy or volume change during shear-band
evolution. The evolution degree of shear band increases with the increase in cutting depth.
A similar relationship between the local volume change and the cutting depth is obtained.
It is demonstrated that the degree of dilatancy ranges from 8.2 to 14.6% at the mature stage
of shear-band evolution, which is consistent with previous results. Based on the experimental
observations, a theoretical model is developed, where the atomic-scale deformation process
based on the cooperative shearing model is related to shear-band behaviour. An intrinsic
correlation between the atomic-scale dilatancy and the dynamics of shear-band evolution, as well
as the dilatancy-induced transition of ductile–brittle shear bands are theoretically reproduced.
In the case of small cutting depth, shear bands exhibit the ductile behaviour, leading to the
macroscopically serrated chips. However, in the case of larger cutting depths, shear bands as a
runaway shearing display the brittle feature and lead to the discontinuous chips. The ductile-to-
brittle transition of the shear band is analysed based on the government equations of shear-band
evolution dynamics, where the critical local volume dilatancy of 16.7% corresponding to the
transition is obtained under the different the values of machine stiffness and the critical cutting
depths. These results confirm that the intrinsic dilatancy induces the ductile-to-brittle transition of
shear banding. Finally, we reveal that there is a linear scaling relationship between the dilatancy
within shear bands and their evolution degree.

Data accessibility. All of the conditions required for duplicating the experiments and analysis have been provided
in the manuscript text.
Authors’ contribution. L.H.D. designed and supervised the project. F.Z. conducted the experiments. L.H.D. and
F.Z. formulated the model and wrote the paper; all authors participated in analysis/interpretation of results,
article drafting/editing and critical revisions. All authors approved publication of the final manuscript.
Competing interests. We have no competing interests.
Funding. The work is financially supported by the National Key Research and Development Program of China
(no. 2017YFB0702003), the NSFC (grant nos. 11790292, 11472287, and 11522221), the Strategic Priority Research
Program of the Chinese Academy of Sciences (grant no. XDB22040302) and the Key Research Program of
Frontier Sciences of the Chinese Academy of Sciences (grant no. QYZDJSSW-JSC011).
Acknowledgement. We thank Dr S.L. Cai for the technical assistance of cutting.

Appendix A. Dilatancy model for shear-band evolution
Scruby et al. [66] have proposed a suitable method to relate the AE signal to the properties of
the corresponding source. Using the point source approximation, the AE source is modelled by a
combination of force dipoles Dij, with the subscripts i and j referring to the directions of the forces
and their separation, respectively. The AE source relates the AE response to the elastic constants
of the material. The surface displacement waveform can be evaluated for each tensor component
of a source by using the dynamic elastic Green’s tensor relating the displacement at any point
in the elastic body to the source. Following these previous work, we assume that dilatancy
source during shear banding can be represented by two pairs of force dipoles, D11 parallel to
the shear band and D22 perpendicular to the shear band, as shown in figure 17. The radial
displacement at the point (r, θ ) from the dipole D11 and D22 due to the arrival of the compression
wave are given by u1 = (Rpsin2θḊ11)/[4π (λ+ 2G)c1r] and u2 = (Rpcos2θḊ22)/[4π (λ+ 2G)c1r],
respectively, where θ = π/2 − φ, λ is Lamé’s constant, G is the shear modulus, Ḋ11 the time
derivative of the source dipole and c1 is the compression wave speed. The factor Rp takes into
account reflection and mode conversion of the incident compression wave at the surface, and
Rp = 2 in the case of the elastic wave is parallel to the surface normal [49,66].

Thus, the wave-field due to the dilatancy source is given by the sum of the individual
contributions: u = u1 + u2 = ( Ḋ11cos2φ + Ḋ22sin2φ) /[ 2π (λ+ 2G)c1r] . For a pure dilatancy
source, D11 = D22 = δV(λ+ 2G/3), where δV is the volume change, then the total displacement
can reduce to u = [δV̇(λ+ 2G/3)]/[π (λ+ 2G)c1r]. This relation implies the surface displacement
proportional to the rate of volume change δV̇.
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Figure 17. Simplified AE set-up with the AE source (shear band) oriented at an angleφ relative to the sensor.

Dilatancy associated with the shear-band process is assumed to be of collective character
[49] and its dynamics is reflected in the increasing upper amplitude level during an AE burst
(figure 8c). Using a linear function in rise time tr between the first threshold crossing at t1 and the
peak amplitude at t2, the total volume change from shear-band initiation to shear-band evolution
is therefore given by integration of the linear function with respect to time:

δV = (πc1r)(λ+ 2G)
λ+ 2G/3

∫ t2

t1

u(t) dt ≈ (πc1r)(λ+ 2G)
λ+ 2G/3

kUptr

2
, (A 1)

where k is the sensor calibration factor used to convert the measured amplitude (in volts) into
units of surface displacement (metres). Generally, k = (g33Ex)−1, where g33 is the piezo-electric
constant of the sensor with the physical units of V·(m N−1) and Ex is the elastic modulus (N m−2)
of the sensor material. Many previous works show that the factor nearly lies about 0.8 ∼ 0.2 ×
10−12 m mV−1 for a variety of common piezo-electric ceramics, even though g33 and Ex are great
different among individual ceramics [67–69]. Here k ∼ 0.5 × 10−12 m mV−1 is adopted.
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